Loading [MathJax]/jax/output/HTML-CSS/config.js
Menu

Adjoint and Inverse of Matrix Class 12

Contents hide
1 1.आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix):

1.आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix):

आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12) का अध्ययन करने के साथ-साथ इस आर्टिकल में हम आव्यूह के व्युत्क्रम के अस्तित्व के लिए शर्तों की भी व्याख्या करेंगे।
आपको यह जानकारी रोचक व ज्ञानवर्धक लगे तो अपने मित्रों के साथ इस गणित के आर्टिकल को शेयर करें।यदि आप इस वेबसाइट पर पहली बार आए हैं तो वेबसाइट को फॉलो करें और ईमेल सब्सक्रिप्शन को भी फॉलो करें।जिससे नए आर्टिकल का नोटिफिकेशन आपको मिल सके । यदि आर्टिकल पसन्द आए तो अपने मित्रों के साथ शेयर और लाईक करें जिससे वे भी लाभ उठाए । आपकी कोई समस्या हो या कोई सुझाव देना चाहते हैं तो कमेंट करके बताएं।इस आर्टिकल को पूरा पढ़ें।

Also Read This Article:- Minor and Co-factor Class 12

2.आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 पर आधारित उदाहरण (Examples Based on Adjoint and Inverse of Matrix Class 12):

प्रश्न 1 से 2 में प्रत्येक आव्यूह का सहखण्डज (adjoint) ज्ञात कीजिए।
Example:1. [1234]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]
Solution:माना A=[1234]A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]
आव्यूह A का सारणिक A=1234A=1×42×3=46=20A11=(1)1+14=4,A12=(1)1+23=3A21=(1)2+1=2,A22=(1)2+21=1 adjoint A=[A11A12A21A22]=[4321] adjoint A=[4231]|A|=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right| \\ \Rightarrow|A|=1 \times 4-2 \times 3=4-6=-2 \neq 0 \\ A_{11}=(-1)^{1+1} 4 =4, A_{12}=(-1)^{1+2} 3=-3 \\ A_{21}=(-1)^{2+1} =-2, A_{22}=(-1)^{2+2} 1=1 \\ \text { adjoint } A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array} \right]^{\prime} \\ =\left[\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right]^{\prime} \\ \Rightarrow \text { adjoint } A=\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]
Example:2. [112235201]\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]
Solution:माना A=[112235201]A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]
आव्यूह A का सारणिक A=[112235201]A=1(3×15×0)+1(2×15×2)+2(2×03×2)=3+(2+10)+2×6=3+12+12A=170A11=(1)1+13501=3×15×0A11=3A12=(1)1+22521=(1)(2×15×2)A12=1(2+10)A12=12A13=(1)1+32320=2×03×2A13=6A24=(1)2+11201=1(1×12×0)A21=1A22=(1)2+21221=×12×2A22=1+4=5A23=(1)2+311=(1)(1×0(1)(2))A23=+2A31=(1)3+11235=(1×52×3)A31=11A32=(1)3+21225=(1)(1×52×2)A32=1A33=(1)3+31123=(1×32×1)A33=5 adjoint A=[A11A12A13A21A22A23A31A32A33]=[31261521115]adjA=[31111251625]|A|=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{array} \right] \\ |A|=1(3 \times 1-5 \times 0)+1(2 \times 1-5 \times-2)+2(2 \times 0-3 \times-2) \\ =3+(2+10)+2 \times 6 \\ =3+12+12 \\ \Rightarrow|A|=17 \neq 0 \\ A_{11}=(-1)^{1+1}\left|\begin{array}{ll}3 & 5 \\ 0 & 1 \end{array}\right|=3 \times 1-5 \times 0 \\ \Rightarrow A_{11}=3 \\ A_{12}=(-1)^{1+2} \left|\begin{array}{ll}2 & 5 \\ -2 & 1\end{array}\right|=(-1)(2 \times 1-5 \times-2) \\ \Rightarrow A_{12}=-1(2+10) \\ \Rightarrow A_{12}=-12 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{ll}2 & 3 \\ -2 & 0\end{array}\right|=2 \times 0-3 \times-2 \\ \Rightarrow A_{13}=6 \\ A_{24}=(-1)^{2+1}\left|\begin{array}{cc} -1 & 2 \\ 0 & 1 \end{array}\right|=-1(-1 \times 1-2 \times 0) \\ \Rightarrow A_{21}=1 \\ A_{22}=(-1)^{2+2} \left|\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right|=\mid \times 1-2 \times-2 \\ \Rightarrow A_{22}=1+4=5 \\ A_{23}=(-1)^{2+3}\left|\begin{array}{cc} \mid-1 & -1 \end{array}\right|=(-1)(1 \times 0-(-1)(-2)) \\ \Rightarrow A_{23}=+2 \\ A_{31}=(-1)^{3+1}\left|\begin{array}{cc} -1 & 2 \\ 3 & 5 \end{array}\right|=-(-1 \times 5-2 \times 3) \\ \Rightarrow A_{31}=-11 \\ A_{32}=(-1)^{3+2} \left|\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right|=(-1)(1 \times 5-2 \times 2) \\ \Rightarrow A_{32}=-1 \\ A_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right|=(1 \times 3-2 \times-1) \\ \Rightarrow A_{33}=5 \\ \therefore \text { adjoint } A=\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} 3 & -12 & 6 \\ 1 & 5 & 2 \\ -11 & -1 & 5 \end{array}\right]^{\prime} \\ \operatorname{adj} A=\left[\begin{array}{ccc} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right]

उपर्युक्त प्रश्नों के उत्तर द्वारा आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix) के बारे में ओर अधिक जानकारी प्राप्त कर सकते हैं।
प्रश्न 3 और 4 में सत्यापित कीजिए कि है।

A(adjA)=(adjA)A=AIA(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| \cdot I
Example:3. [2346]\left[\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right]
Solution:माना A=[2346]A=\left[\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right]
आव्यूह A का सारणिक

A=2346A=2×63×4=12+12=0A11=(1)1+1(6)=6A12=(1)1+2(4)=4A21=(1)2+1(3)=3A22=(1)2+2(2)=2ddjA=[A11A12A21A22]=[6432]adjA=[6342]A(adjA)=[2346][6342]=[2×6+3×42×3+3×24×66×44×36×2]=[12+126+624241212]=[0000]=A[1001]A(adjA)=AI(2)(adjA)(A)=[6342][2346]=[6×23×46×33×64×2+2×44×3+2×6]=[12+1218+18881212]=[0000][1001](adjA)A=AI(2)|A|=\left|\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right| \\ \Rightarrow|A|=2 \times -6-3 \times-4=-12+12=0 \\ A_{11}=(-1)^{1+1}(-6)=-6 \\ A_{12}=(-1)^{1+2}(-4)=4 \\ A_{21}=(-1)^{2+1}(3)=-3 \\ A_{22}=(-1)^{2+2}(2)=2 \\ \operatorname{ddj} A=\left[\begin{array}{ll} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ll} -6 & 4 \\ -3 & 2 \end{array}\right]^{\prime} \\ \operatorname{adj} A=\left[\begin{array}{cc} -6 & -3 \\ 4 & 2 \end{array}\right] \\ A(\operatorname{adj} A) =\left[\begin{array}{cc} 2 & 3 \\ -4 & -6\end{array}\right]\left[\begin{array}{cc} -6 & -3 \\ 4 & 2 \end{array}\right] \\ =\left[\begin{array}{cc}2 \times-6+3 \times 4 & 2 \times-3+3 \times 2 \\-4 \times-6-6 \times 4 & -4 \times-3-6 \times 2 \end{array}\right] \\ =\left[\begin{array}{cc} -12+12 & -6+6 \\ 24-24 & 12-12 \end{array}\right] \\ =\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ =|A|\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\ \Rightarrow A(\operatorname{adj} A)=|A| I \cdots(2)\\ (\operatorname{adj} A)(A)=\left[\begin{array}{cc} -6 & -3 \\ 4 & 2 \end{array}\right]\left[\begin{array}{cc} 2 & 3 \\ -4 & -6 \end{array}\right] \\ =\left[\begin{array}{cc} -6 \times 2-3 \times-4 & -6 \times 3-3 \times-6 \\ 4 \times 2+2 \times-4 & 4 \times 3+2 \times-6 \end{array}\right] \\ =\left[\begin{array}{cc} -12+12 & -18+18 \\ 8-8 & 12-12 \end{array}\right] \\ =\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\ \Rightarrow(\operatorname{adj} A) A=|A| I \cdots(2)
(1) व (2) से:

A(adjA)=(adjA)A=AIA(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I
Example:4. [112302103]\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]
Solution:माना A=[112302103]A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]
आव्यूह A का सारणिक

A=112302103=1(0×30×2)+1(3×31×2)+2(3×00×1)=0+11+0A=11A11=(1)1+10203=0A11=0A12=(1)1+23213=1(3×31×2)A12=11A13=(1)1+33010=0A13=0A21=(1)2+11203=1(1×32×0)A21=3A22=(1)2+21213=1×32×1A22=1A23=(1)2+31110=1(1×01×1)A23=1A31=(1)3+11202=1×22×0A31=2A32=(1)3+21232=1(1×22×3)A32=8A33=(1)3+31130=(1×03×1)A33=3adjA=[A11A12A13A21A22A23A31A32A33]=[0110311283]=[0321118013]A(adjA)=[112302103][0321118013]=[(1×01×(1×31×(1×21×11+2×0)1+2×1)8+2×3)(3×0+0×(3×3+0×(3×2+0×112×0)12×1)82×3)(1×0+0×(1×3+0×(1×2+0×11+3×0)1+3×1)3+3×3)]=[110001100011]=11[100010001]A(adjA)=AI(1)(adjA)(A)=[0321118013][112302103]=[(0×1+3(0×1+3(0×2+3×3+2×1)×0+2×0)×2+2×3)(11×1+1(11×1+1(1×2+1×3+8×1)×0+8×0)×2+8×3)(0×11(0×11(0×21×3+3×1)×0+3×0)×2+3×3)]=[110001100011]=11[100010001](adjA)A=AI(2)|A|=\left|\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right| \\ =1(0 \times 3-0 \times-2)+1(3 \times 3-1 \times-2)+2(3 \times 0-0 \times 1) \\ =0+11+0 \\ \Rightarrow|A|=11 \\ A_{11}=(-1)^{1+1}\left|\begin{array}{cc}0 & -2 \\ 0 & 3\end{array}\right|=0 \\ \Rightarrow A_{11}=0 \\ A_{12}=(-1)^{1+2}\left|\begin{array}{cc}3 & -2 \\ 1 & 3\end{array}\right|=-1(3 \times 3-1 \times-2) \\ \Rightarrow A_{12}=-11 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right|=0 \\ \Rightarrow A_{13}=0 \\ A_{21}=(-1)^{2+1}\left|\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right|=-1(-1 \times 3-2 \times 0) \\ \Rightarrow A_{21}=3 \\ A_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 2 \\ 1 & 3 \end{array} \right|=1\times 3-2 \times 1 \\ \Rightarrow A_{22}=1 \\ A_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right|=-1(1 \times 0-1 \times-1) \\ \Rightarrow A_{23}=-1 \\ A_{31}=(-1)^{3+1} \left|\begin{array}{cc} -1 & 2 \\ 0 & -2 \end{array}\right|=-1 \times-2-2 \times 0 \\ \Rightarrow A_{31}=2 \\ A_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 2 \\ 3 & -2 \end{array}\right|=-1(1 \times-2-2 \times 3) \\ \Rightarrow A_{32}=8 \\ A_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 3 & 0 \end{array}\right|=(1 \times 0-3 \times-1) \\ \Rightarrow A_{33}=3 \\ \operatorname{adj} A =\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} 0 & -11 & 0 \\ 3 & 1 & -1 \\ 2 & 8 & 3 \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{array}\right] \\ A(\operatorname{adj} A) =\left[\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right]\left[\begin{array}{ccc} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{array} \right] \\ =\left[\begin{array}{lll} (1 \times 0-1 \times & (1 \times 3-1 \times & (1 \times 2-1 \times \\ -11+2 \times 0) & 1+2 \times-1) & 8+2 \times 3) \\ (3 \times 0+0 \times & (3 \times 3+0 \times & (3 \times 2+0 \times \\ 11-2 \times 0) & 1-2 \times-1) & 8-2 \times 3) \\ (1 \times 0+0 \times & (1 \times 3+0 \times & (1 \times 2+0 \times \\ -11+3 \times 0) & 1+3 \times-1) & 3+3 \times 3) \end{array}\right]\\=\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{array}\right] \\ =11\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ \Rightarrow A(\operatorname{adj} A)=|A| I \ldots(1) \\ (\operatorname{adj} A)(A)=\left[\begin{array}{ccc} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{array}\right]\left[\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right] \\ =\left[\begin{array}{ccc} (0 \times 1+3 & (0 \times-1+3 & (0 \times 2+3 \\ \times 3+2 \times 1) & \times 0+2 \times 0) & \times-2+2 \times 3) \\ (-11 \times 1+1 & (-11 \times -1+1 & (1 \times 2+1 \\ \times 3+8 \times 1) & \times 0+8 \times 0) & \times 2+8 \times 3) \\ (0 \times 1-1 & (0 \times -1-1 & (0 \times 2-1 \\ \times 3+3 \times 1) & \times 0+3 \times 0) & \times-2+3 \times 3) \end{array}\right] \\ =\left[\begin{array}{ccc} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{array}\right] \\ =11\left[\begin{array}{lll} 1 & 0 & 0 \\0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ \Rightarrow (\operatorname{adj} A) A=|A| I \cdots(2)
(1) व (2) से:

A(adjA)=(adjA)A=AIA(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| \cdot I
प्रश्न 5 से 11 में दिए गए प्रत्येक आव्यूहों के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
Example:5. [2243]\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]
Solution:माना A=[2243]A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]
आव्यूह A का सारणिक A=2243=2×34×2A=6+8=140|A|=\left|\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right| =2 \times 3-4 \times-2 \\ \Rightarrow|A|=6+8=14 \neq 0
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+13=3A12=(1)1+24=4A21=(1)2+1(2)=2A22=(1)2+2=2adjA=[A11A12A21A22]=[3422]adjA=[3242]A1=1AadjAA1=114[3242]A_{11}=(-1)^{1+1} 3=3 \\ A_{12}=(-1)^{1+2} 4=-4 \\ A_{21}=(-1)^{2+1}(-2)=2 \\A_{22}=(-1)^{2+2}=2 \\ \operatorname{adj} A =\left[\begin{array}{ll} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right]^{\prime} \\ =\left[\begin{array}{cc} 3 & -4 \\ 2 & 2 \end{array}\right]^{\prime} \\ \Rightarrow \operatorname{adj} A=\left[\begin{array}{ll} 3 & 2 \\ -4 & 2 \end{array}\right] \\ A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\ \Rightarrow A^{-1}=\frac{1}{14}\left[\begin{array}{ll} 3 & 2 \\ -4 & 2 \end{array}\right]
Example:6. [1532]\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]
Solution:माना A=[1532]A=\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]
आव्यूह A का सारणिक A=1532A=1×25×3=2+15=130|A|=\left|\begin{array}{cc} -1 & 5 \\ -3 & 2 \end{array}\right| \\ \Rightarrow|A|=-1 \times 2-5 \times-3=-2+15=13 \neq 0
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+12=2A12=(1)1+2(3)=3A21=(1)2+15=5A22=(1)2+2(1)=1adjA=[A11A12A21A22]=[2351]adjA=[2531]A1=1AadjA=113[2531]A_{11}=(-1)^{1+1} 2=2 \\ A_{12}=(-1)^{1+2}(-3)=3 \\ A_{21}=(-1)^{2+1} 5=-5 \\ A_{22}=(-1)^{2+2}(-1)=-1 \\ \operatorname{adj} A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]^{\prime} \\ =\left[\begin{array}{cc} 2 & 3 \\ -5 & -1 \end{array}\right] \\ \Rightarrow \operatorname{adj} A=\left[\begin{array}{ll} 2 & -5 \\ 3 & -1 \end{array}\right] \\ A^{-1} =\frac{1}{|A|} \operatorname{adj} A \\=\frac{1}{13}\left[\begin{array}{ll} 2 & -5 \\ 3 & -1 \end{array}\right]

उपर्युक्त प्रश्नों के उत्तर द्वारा आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix) के बारे में ओर अधिक जानकारी प्राप्त कर सकते हैं।

Example:7. [123024005]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]
Solution:माना A=[123024005]A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]
आव्यूह A का सारणिक A=123024005|A|=\left|\begin{array}{lll} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{array}\right|
प्रथम स्तम्भ के अनुसार प्रसरण करने पर:
=1(2×54×0)0(2×53×0)+0(2×43×2)A=1001(2 \times 5-4 \times 0)-0(2 \times 5-3 \times 0)+0(2 \times 4-3 \times 2) \\ \Rightarrow|A|=10 \neq 0
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+12405=2×54×0A11=10A12=(1)1+20405=1(0×50×44)A12=0A13=(1)1+30200=(0×0.0×2)A13=0A21=(1)2+12305=1(2×50×3)A21=10A22=(1)2+21305=1×53×0A22=5A23=(1)2+31200=1(1×02×0)A23=0A31=(1)3+12324=2×43×2A31=2A32=(1)3+21304=1(1×43×0)A32=4A33=(1)3+31202=(1×20×2)A33=2adjA=[A11A12A13A21A22A23A31A32A33]=[10001050242]adjA=[10102054002]A1=1AadjA=110[10102054002]A_{11}=(-1)^{1+1}\left|\begin{array}{ll} 2 & 4 \\ 0 & 5 \end{array}\right|=2 \times 5-4 \times 0 \\ \Rightarrow A_{11}=10 \\ A_{12}=(-1)^{1+2}\left|\begin{array}{ll} 0 & 4 \\ 0 & 5 \end{array}\right|=-1(0 \times 5-0 \times 44) \\ A_{12}=0 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{ll} 0 & 2 \\ 0 & 0 \end{array} \right| =(0 \times 0.0 \times 2) \\ \Rightarrow A_{13}=0 \\ A_{21}=(-1)^{2+1}\left|\begin{array}{ll} 2 & 3 \\ 0 & 5 \end{array}\right|=-1(2 \times 5-0 \times 3) \\ \Rightarrow A_{21}=-10 \\ A_{22}=(-1)^{2+2} \left|\begin{array}{ll} 1 & 3 \\ 0 & 5 \end{array}\right|=1 \times 5-3 \times 0 \\ \Rightarrow A_{22}=5 \\ A_{23}=(-1)^{2+3}\left|\begin{array}{ll} 1 & 2 \\ 0 & 0 \end{array}\right|=-1(1 \times 0-2 \times 0) \\ \Rightarrow A_{23}=0 \\ A_{31}=(-1)^{3+1}\left|\begin{array}{ll} 2 & 3 \\ 2 & 4 \end{array}\right|=2 \times 4-3 \times 2 \\ \Rightarrow A_{31}=2 \\ A_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 3 \\ 0 & 4 \end{array} \right|=-1(1 \times 4-3 \times 0) \\ \Rightarrow A_{32}=-4 \\ A_{33}=(-1)^{3+3} \left|\begin{array}{ll} 1 & 2 \\ 0 & 2 \end{array}\right|=(1 \times 2-0 \times 2) \\ \Rightarrow A_{33}=2 \\ \operatorname{adj} A=\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} 10 & 0 & 0 \\ -10 & 5 & 0 \\ 2 & -4 & 2 \end{array}\right]^{\prime} \\ \Rightarrow \operatorname{adj} A=\left[\begin{array}{ccc} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{array}\right] \\ A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\ =\frac{1}{10} \left[\begin{array}{ccc} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{array}\right] 
Example:8. [100330521]\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]
Solution:माना A=[100330521]A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right] 
आव्यूह A का सारणिक A=100330521|A|=\left|\begin{array}{ccc}1 & 0 & 0 \\3 & 3 & 0 \\5 & 2 & -1\end{array}\right| 
प्रथम पंक्ति के अनुसार प्रसरण करने पर:
0=1(3×12×0)+0(3×15×0)+0(3×23×5)A=300=1(3 \times-1-2 \times 0)+0(3 \times-1-5 \times 0)+0(3 \times 2-3 \times 5) \\ \Rightarrow|A| =-3 \neq 0 
अतः A1A^{-1}  का अस्तित्व है।

A11=(1)1+13021=(3×10×2)A11=3A12=(1)1+23051=1(3×10×5)A12=3A13=(1)1+33352=(3×25×3)A13=9A21=(1)2+10021=1(0×10×2)A21=0A22=(1)2+21051=(1×10×5)A22=1A23=(1)2+31052=1(1×20×5)A23=2A31=(1)3+10030=0×00×3A31=0A32=(1)3+21030=1×00×3A32=0A33=(1)3+31033=1×30×3 A33=3adjA=[A11A12A13A21A22A23A31A32A33]=[339012003]adjA=[300310923]A1=1AadjAA1=13[300310923]A_{11}=(-1)^{1+1}\left|\begin{array}{cc} 3 & 0 \\ 2 & -1 \end{array}\right|=(3 \times-1-0 \times 2) \\ \Rightarrow A_{11}=-3 \\ A_{12}=(-1)^{1+2}\left|\begin{array}{cc}3 & 0 \\5 & -1 \end{array}\right|=-1(3 \times-1-0 \times 5) \\ \Rightarrow A_{12}=3 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{cc} 3 & 3 \\ 5 & 2 \end{array}\right|=(3 \times 2-5 \times 3) \\ \Rightarrow A_{13}=-9 \\ A_{21}=(-1)^{2+1}\left|\begin{array}{ll}0 & 0 \\ 2 & -1 \end{array}\right|=-1(0 \times-1-0 \times 2) \\ \Rightarrow A_{21}=0 \\ A_{22}=(-1)^{2+2}\left|\begin{array}{cc} 1 & 0 \\ 5 & -1 \end{array}\right|=(1 \times-1-0 \times 5) \\ \Rightarrow A_{22}=-1 \\ A_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & 0 \\ 5 & 2 \end{array}\right|=-1(1 \times 2-0 \times 5) \\ \Rightarrow A_{23}=-2 \\ A_{31}=(-1)^{3+1}\left|\begin{array}{ll} 0 & 0 \\ 3 & 0 \end{array} \right|=0 \times 0-0 \times 3 \\ \Rightarrow A_{31}=0 \\ A_{32}=(-1)^{3+2}\left|\begin{array}{ll} 1 & 0 \\ 3 & 0 \end{array}\right|=1 \times 0-0 \times 3 \\ \Rightarrow A_{32}=0 \\ A_{33}=(-1)^{3+3} \left|\begin{array}{ll} 1 & 0 \\ 3 & 3 \end{array}\right|=1 \times 3-0 \times 3  \\ \Rightarrow A_{33}=3 \\ \\ \operatorname{adj} A=\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} -3 & 3 & -9 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{array}\right]^{\prime} \\ \Rightarrow \operatorname{adj} A=\left[\begin{array}{ccc} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{array}\right] \\ A^{-1}= \frac{1}{|A|} \operatorname{adj} A \\ \Rightarrow A^{-1}=-\frac{1}{3}\left[\begin{array}{ccc} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{array}\right] 
Example:9. [213410721]\left[\begin{array}{ccc} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{array}\right] 
Solution:माना A=[213410721]A=\left[\begin{array}{ccc} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{array}\right] 
आव्यूह A का सारणिक A=213410721|A|=\left|\begin{array}{ccc} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{array}\right| 
द्वितीय पंक्ति के अनुसार प्रसरण करने पर:
=-4(1×1-3×2)-1(2×1-3×-7)+0(2×2-1×-7)
=-4(1-6)-1(2+21)+0
=2023A=3020-23 \\ \Rightarrow |A|=-3 \neq 0 
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+11021=(1×10×2)A11=1A12=(1)1+24071=1(4×10×7)A12=4A13=(1)1+34172=(4×2(1)(7))A13=87=1A21=(1)2+11321=1(1×13×2)A21=(16)=5A22=(1)2+22371=(2×13×7)A22=23A23=(1)2+32172=1(2×21×7)A23=1(4+7)=11A31=(1)3+11310=1×03×1A31=3A32=(1)3+22340=1(2×03×4)A32=12A33=(1)3+32141=2×11×4A33=6adjA=[A11A12A13A21A22A23A31A32A33]=[141523113126]adjA=[153423121116]A1=1AadjAA1=13[153423121116]A_{11}=(-1)^{1+1}\left|\begin{array}{rr} -1 & 0 \\ 2 & 1 \end{array}\right|=(-1 \times 1-0 \times 2) \\ \Rightarrow A_{11}=-1 \\ A_{12}=(-1)^{1+2}\left|\begin{array}{cc} 4 & 0 \\ -7 & 1 \end{array}\right|=-1(4 \times 1-0 \times-7) \\ \Rightarrow A_{12}=-4 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{cc} 4 & -1 \\ -7 & 2 \end{array}\right|=(4 \times 2-(-1)(-7)) \\ \Rightarrow A_{13}=8-7=1 \\ A_{21}=(-1)^{2+1} \left| \begin{array}{ll} 1 & 3 \\ 2 & 1 \end{array}\right|=-1(1 \times 1-3 \times 2) \\ \Rightarrow A_{21}=-(1-6)=5 \\ A_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & 3 \\ -7 & 1 \end{array}\right|=(2 \times 1-3 \times-7) \\ \Rightarrow A_{22}=23 \\ A_{23}=(-1)^{2+3}\left|\begin{array}{ll} 2 & 1 \\ -7 & 2 \end{array}\right|=-1(2 \times 2-1 \times-7) \\ \Rightarrow A_{23}=-1(4+7)=-11 \\ A_{31}=(-1)^{3+1}\left|\begin{array}{cc} 1 & 3 \\ -1 & 0 \end{array}\right|=1 \times 0-3 \times-1 \\ \Rightarrow A_{31}=3 \\ A_{32}=(-1)^{3+2} \left|\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right|=-1(2 \times 0-3 \times 4) \\ \Rightarrow A_{32}=12 \\ A_{33}=(-1)^{3+3}\left|\begin{array}{cc} 2 & 1 \\ 4 & -1 \end{array}\right|=2 \times-1-1 \times 4 \\ \Rightarrow A_{33}=-6 \\ \operatorname{adj} A=\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} -1 & -4 & 1 \\ 5 & 23 & -11 \\ 3 & 12 & -6 \end{array}\right]^{\prime} \\ \Rightarrow \operatorname{adj} A=\left[\begin{array}{ccc} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{array}\right] \\ A^{-1}= \frac{1}{|A|} \operatorname{adj} A \\ \Rightarrow A^{-1}=-\frac{1}{3}\left[\begin{array}{ccc} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{array}\right] 
Example:10. [112023324]\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right] 
Solution:माना A=[112023324] A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right] 
आव्यूह A का सारणिक A=112023324|A|=\left|\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right|
द्वितीय पंक्ति के अनुसार प्रसरण करने पर:
= 01224+21234+31132=2(1×42×3)+3(1×23×1)=2(46)+3(2+3)=4+3A=10-0\left|\begin{array}{ll} -1 & 2 \\ -2 & 4 \end{array}\right|+2\left|\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right|+3\left|\begin{array}{cc} 1 & -1 \\ 3 & -2 \end{array}\right| \\ =2(1 \times 4-2 \times 3)+3(1 \times-2-3 \times-1) \\ =2(4-6)+3(-2+3) \\ =-4+3 \\ \Rightarrow|A| =-1 \neq 0
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+12324=(2×4(3)(2))A11=2A12=(1)1+20334=1(0×43×3)A12=9A13=(1)1+30232=(0×22×3)A13=6A21=(1)2+11224=1(1×42×2)A21=1(4+4)=0A22=(1)2+21234=1×42×3A22=2A23=(1)2+31132=1(1×23×1)A23=1(2+3)=1A31=(1)3+11223=1×32×2A31=1A32=(1)3+21203=1(1×32×0)A32=3A33=(1)3+31102=1×20×1A33=2adjA=[A11A12A13A21A22A23A31A32A33]=[296021132]adjA=[201923612]A1=1AadjA=1[201923612]A1=[201923612]A1=1AadyA=1[201523612]A_{11}=(-1)^{1+1}\left|\begin{array}{cc} 2 & -3 \\ -2 & 4 \end{array}\right|=(2 \times 4-(-3)(-2)) \\ \Rightarrow A_{11}=2 \\ A_{12}=(-1)^{1+2}\left|\begin{array}{cc} 0 & -3 \\ 3 & 4 \end{array}\right|=-1(0 \times 4-3 \times-3) \\ \Rightarrow A_{12}=-9 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{cc} 0 & 2 \\ 3 & -2 \end{array}\right|=(0 \times-2-2 \times 3) \\ \Rightarrow A_{13}=-6 \\ A_{21}=(-1)^{2+1}\left|\begin{array}{cc} -1 & 2 \\ -2 & 4\end{array}\right|=-1(-1 \times 4-2 \times-2) \\ \Rightarrow A_{21}=-1(-4+4)=0 \\ A_{22}=(-1)^{2+2}\left|\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right|=1 \times 4-2 \times 3 \\ \Rightarrow A_{22}=-2 \\ A_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & -1 \\ 3 & -2 \end{array}\right|=-1(1 \times-2-3 \times-1) \\ \Rightarrow A_{23}=-1(-2+3)=-1 \\ A_{31}=(-1)^{3+1}\left|\begin{array}{cc} -1 & 2 \\ 2 & -3 \end{array}\right|=-1 \times-3-2 \times 2 \\ \Rightarrow A_{31}=-1 \\ A_{32}=(-1)^{3+2} \left|\begin{array}{cc} 1 & 2 \\ 0 & -3 \end{array}\right|=-1(1 \times-3-2 \times 0) \\ \Rightarrow A_{32}=3 \\ A_{33}=(-1)^{3+3}\left|\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right|=1 \times 2-0 \times-1 \\ \Rightarrow A_{33}=2 \\ \operatorname{adj} A=\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right]^{\prime} \\ =\left[\begin{array}{ccc} 2 & -9 & -6 \\ 0 & -2 & -1 \\ -1 & 3 & 2 \end{array}\right] \\ \Rightarrow \operatorname{adj} A= \left[\begin{array}{ccc} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{array}\right] \\ A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\ =-1\left[\begin{array}{ccc} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{array} \right] \\ \Rightarrow A^{-1}=\left[\begin{array}{ccc} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{array} \right] \\ A^{-1}=\frac{1}{|A|} \operatorname{ady} A \\ =-1\left[\begin{array}{ccc} 2 & 0 & -1 \\ -5 & -2 & 3 \\ -6 & -1 & 2 \end{array}\right]
Example:11. [1000cosαsinα0sinαcosα]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]
Solution:माना A=[1000cosαsinα0sinαcosα]A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]
आव्यूह A का सारणिक A=1000cosαsinα0sinαcosα|A|=\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right|
प्रथम पंक्ति के अनुसार प्रसरण करने पर:

=1(cos2αsin2α)0(0×cosα0×sinα)+0(0×sinα0×cosα)=1(sin2α+cos2α)A=101\left(-\cos ^2 \alpha-\sin ^2 \alpha\right)-0(0 \times -\cos \alpha-0 \times \sin \alpha)+0(0 \times \sin \alpha-0 \times \cos \alpha) \\=-1\left(\sin ^2 \alpha+\cos ^2 \alpha\right) \\ \Rightarrow |A|=-1 \neq 0
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+1cosαsinαsinαcosα=(cosα×cosαsinα×sinα)A11=(cos2α+sin2α)=1A12=(1)1+20sinα0cosα=1(0×cosαsinα×0)A12=0A13=(1)1+30cosα0sinα=0×sinα0×cosαA13=0A21=(1)2+100sinαcosα=0×cosα0×sinαA21=0A22=(1)2+2000cosα=1×cosα0×0A22=cosαA23=(1)2+3100sinα=1(1×sinα0×0)A23=sinαA31=(1)3+100cosαsinα=0×sinα0×cosαA31=0A32=(1)3+2100sinα=1(1×sinα0×0)A32=sinαA33=(1)3+3100cosα=1×cosα0×0A33=cosαadjA=[A11A12A13A211A22A23A31A32A33]=[1000cosαsinα0sinαcosα]A1=1AadjA=11[1000cosαsinα0sinαcosα]A1=[1000cosαsinα0sinαcosα]A_{11}=(-1)^{1+1}\left|\begin{array}{lc}\cos \alpha & \sin \alpha \\\sin \alpha & -\cos \alpha \end{array} \right| =(\cos \alpha \times -\cos \alpha-\sin \alpha \times \sin \alpha) \\ \Rightarrow A_{11}=-\left(\cos ^2 \alpha+\sin ^2 \alpha\right)=-1 \\A_{12}=(-1)^{1+2}\left|\begin{array}{cc}0 & \sin \alpha \\0 & -\cos \alpha\end{array}\right|=-1(0 \times-\cos \alpha-\sin \alpha \times 0) \\\Rightarrow A_{12}=0 \\ A_{13}=(-1)^{1+3}\left|\begin{array}{cc} 0 & \cos \alpha \\ 0 & \sin \alpha \end{array}\right|=0 \times \sin \alpha-0 \times \cos \alpha \\ \Rightarrow A_{13}=0 \\ A_{21}=(-1)^{2+1}\left|\begin{array}{cc} 0 & 0 \\ \sin \alpha & -\cos \alpha \end{array}\right|=0 \times-\cos \alpha-0 \times \sin \alpha \\ \Rightarrow A_{21}=0 \\ A_{22}=(-1)^{2+2}\left|\begin{array}{cc} 0 & 0 \\ 0 & -\cos \alpha \end{array}\right|=1 \times-\cos \alpha-0 \times 0 \\ \Rightarrow A_{22}=-\cos \alpha \\ A_{23}=(-1)^{2+3}\left|\begin{array}{cc} 1 & 0 \\ 0 & \sin \alpha \end{array}\right|=-1(1 \times \sin \alpha-0 \times 0) \\ \Rightarrow A_{23}=-\sin \alpha \\ A_{31}=(-1)^{3+1}\left|\begin{array}{cc}0 & 0 \\ \cos \alpha & \sin \alpha \end{array}\right|=0 \times \sin \alpha-0 \times \cos \alpha \\ \Rightarrow A_{31}=0 \\ A_{32}=(-1)^{3+2}\left|\begin{array}{cc} 1 & 0 \\ 0 & \sin \alpha \end{array}\right|=-1(1 \times \sin \alpha-0 \times 0) \\ \Rightarrow A_{32}=-\sin \alpha \\ A_{33}=(-1)^{3+3}\left|\begin{array}{ll} 1 & 0 \\ 0 & \cos \alpha \end{array}\right|=1 \times \cos \alpha-0 \times 0 \\ \Rightarrow A_{33}=\cos \alpha \\ \operatorname{adj} A =\left[\begin{array}{lll} A_{11} & A_{12} & A_{13} \\ A_{21} 1 & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]^{\prime} \\=\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{array}\right] \\ A^{-1} =\frac{1}{|A|} \operatorname{adj} A \\ = -\frac{1}{1}\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{array}\right] \\ \Rightarrow A^{-1} =\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{array}\right]
Example:12.यदि A=[3725]A=\left[\begin{array}{ll} 3 & 7 \\2 & 5 \end{array}\right] और B=[6879]B=\left[\begin{array}{ll} 6 & 8 \\ 7 & 9 \end{array}\right] है तो सत्यापित कीजिए कि (AB)1=B1A1(A B)^{-1}=B^{-1} A^{-1} है।
Solution: A=[3725]A=\left[\begin{array}{ll} 3 & 7 \\2 & 5 \end{array}\right]
आव्यूह A का सारणिक A=3725A=3×52×7=10|A|=\left|\begin{array}{ll} 3 & 7 \\ 2 & 5 \end{array}\right| \\ \Rightarrow|A|=3 \times 5-2 \times 7= 1 \neq 0
अतः A1A^{-1} का अस्तित्व है।

A11=(1)1+15=5,A12=(1)1+22=2A21=(1)2+17=7,A22=(1)2+23=3adjA=[A11A12A21A22]=[5273]adjA=[5723]A1=1AadjA=11[5723]A1=[57282338]A_{11}=(-1)^{1+1} 5=5, A_{12}=(-1)^{1+2} 2=-2 \\ A_{21} =(-1)^{2+1} 7=-7, A_{22}=(-1)^{2+2} 3=3 \\ \operatorname{adj} A =\left[\begin{array}{ll} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]^{\prime} \\ =\left[\begin{array}{cc}5 & -2 \\-7 & 3\end{array}\right]^{\prime}\\ \Rightarrow \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\-2 & 3\end{array}\right] \\ A^{-1} =\frac{1}{|A|} \operatorname{adjA} \\ =\frac{1}{1}\left[\begin{array}{cc} 5 & -7 \\ -2 & 3 \end{array}\right] \\ \Rightarrow A^{-1} =\left[\begin{array}{cc} 5 & -7 \\ -2 & 8 \\ -2 & 3 \\ 3 & 8 \end{array}\right]
आव्यूह B का सारणिक B=6879B=6×98×7=20|B|=\left|\begin{array}{ll} 6 & 8 \\ 7 & 9 \end{array}\right| \\ |B|=6 \times 9-8 \times 7=-2 \neq 0
अतः B1B^{-1} का अस्तित्व है।

B11=(1)1+19=9,B12=(1)1+27=7B21=(1)2+18=8,B2+2=(1)2+26=6adjB=[B11B12B21B22]=[9786]adjB=[9876]B1=1BadjB=12[9876]=[92827262]B1=[924723]AB=[3725][6879]=[3×6+7×73×8+7×92×6+5×72×8+5×9]=[67874761]AB=67×6187×47=40874089AB=20adj(AB)=[61478767]adjAB=[61874767](AB)1=1ABadj(AB)=12[61874767](AB)1=[612872472672](1)B1A1=[924723][5723]=[4528632+12352+64929]B1A1=[612872472672](2)B_{11} =(-1)^{1+1} 9=9, B_{12}=(-1)^{1+2} 7=-7 \\ B_{21} =(-1)^{2+1} 8=-8, B_{2+2}=(-1)^{2+2} 6=6 \\ \operatorname{adj} B =\left[\begin{array}{ll} B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]^{\prime} \\ =\left[\begin{array}{cc} 9 & -7 \\ -8 & 6 \end{array}\right]^{\prime} \\ \Rightarrow \operatorname{adj} B=\left[\begin{array}{cc} 9 & -8 \\ -7 & 6 \end{array}\right] \\ B^{-1}=\frac{1}{|B|} \operatorname{adj} B \\=-\frac{1}{2}\left[\begin{array}{cc} 9 & -8 \\ -7 & 6 \end{array}\right] \\ =\left[\begin{array}{cc} -\frac{9}{2} & \frac{8}{2} \\ \frac{7}{2} & -\frac{6}{2} \end{array}\right]\\ \Rightarrow B^{-1}=\left[\begin{array}{cc} -\frac{9}{2} & 4 \\ -\frac{7}{2} & -3 \end{array}\right] \\ AB=\left[\begin{array}{ll} 3 & 7 \\ 2 & 5 \end{array}\right]\left[\begin{array}{ll} 6 & 8 \\ 7 & 9 \end{array}\right] \\ =\left[\begin{array}{ll} 3 \times 6+7 \times 7 & 3 \times 8+7 \times 9 \\ 2 \times 6+5 \times 7 & 2 \times 8+5 \times 9 \end{array}\right] \\=\left[\begin{array}{ll} 67 & 87 \\ 47 & 61 \end{array}\right] \\ |A B| =67 \times 61-87 \times 47=4087-4089 \\ \Rightarrow|A B| =-2 \neq 0 \\ \operatorname{adj}(A B) =\left[\begin{array}{ll} 61 & -47 \\ -87 & 67\end{array}\right] \\ \Rightarrow \operatorname{adj} A B=\left[\begin{array}{cc}61 & -87 \\ -47 & 67 \end{array}\right] \\ (AB)^{-1}=\frac{1}{|A B|} \operatorname{adj}(A B) \\ =-\frac{1}{2}\left[\begin{array}{cc} 61 & -87 \\ -47 & 67 \end{array}\right] \\ \Rightarrow (AB)^{-1}=\left[\begin{array}{cc} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2}\end{array}\right] \cdots(1) \\ B^{-1} A^{-1} =\left[\begin{array}{cc} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{array}\right]\left[\begin{array}{cc} 5 & -7 \\ -2 & 3 \end{array} \right] \\ =\left[\begin{array}{cc} -\frac{45}{2}-8 & \frac{63}{2}+12 \\ \frac{35}{2}+6 & -\frac{49}{2}-9 \end{array}\right] \\ \Rightarrow B^{-1} A^{-1} =\left[\begin{array}{cc} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2}\end{array}\right] \cdots(2)
(1) व (2) से:

(AB)1=B1A1(A B)^{-1}=B^{-1} A^{-1}

उपर्युक्त प्रश्नों के उत्तर द्वारा आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix) के बारे में ओर अधिक जानकारी प्राप्त कर सकते हैं।

3.आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 के सवाल (Adjoint and Inverse of Matrix Class 12 Questions):

(1.)निम्नलिखित मैट्रिक्स की व्युत्क्रमणीय मैट्रिक्स ज्ञात कीजिए

[012123311]\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]
(2.)यदि A=[504232121]A=\left[\begin{array}{lll}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right] तथा B1=[133143134]B^{-1}=\left[\begin{array}{ccc}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right] हो तो (AB)1(A B)^{-1} ज्ञात कीजिए।
उत्तर (Answers): (1.) [121212431523212]\left[\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]
(2.)[219272182532942]\left[\begin{array}{ccc} -2 & 19 & -27 \\ -2 & 18 & -25 \\ -3 & 29 & -42 \end{array}\right]

उपर्युक्त प्रश्नों के उत्तर द्वारा आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix) के बारे में ओर अधिक जानकारी प्राप्त कर सकते हैं।

Also Read This Article:- Area of Triangle Class 12

4.आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Frequently Asked Questions Related to Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix) से सम्बन्धित अक्सर पूछे जाने वाले प्रश्न:

प्रश्न:1.आव्यूह के सहखण्डज की परिभाषा दीजिए। (Give the Definition of Adjoint of a Matrix):

उत्तर:एक वर्ग आव्यूह A=[aij]A=\left[a_{i j}\right] का सहखण्डज,आव्यूह [Aij]\left[A_{i j} \right] के परिवर्त के रूप में परिभाषित है,जहाँ AijA_{i j} ,अवयव aija_{i j} का सहखण्ड है।आव्यूह A के सहखण्डज को adj A के द्वारा व्यक्त करते हैं।

प्रश्न:2.आव्यूह अव्युत्क्रणीय कब होता है? (When is the Matrix Singular?):

उत्तर:एक वर्ग आव्यूह A अव्युत्क्रणीय (singular) कहलाता है यदि आव्यूह A का सारणिक |A|=0 है।

प्रश्न:3.आव्यूह व्युत्क्रमणीय कब होता है? (When is the Matrix Non-singular?):

उत्तर:एक वर्ग आव्यूह A व्युत्क्रमणीय (non-singular) कहलाता है यदि आव्यूह A का सारणिक A0|A| \neq 0 है।
उपर्युक्त प्रश्नों के उत्तर द्वारा आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12),आव्यूह के सहखण्डज और व्युत्क्रम (Adjoint and Inverse of Matrix) के बारे में ओर अधिक जानकारी प्राप्त कर सकते हैं।

No. Social Media Url
1. Facebook click here
2. you tube click here
3. Instagram click here
4. Linkedin click here
5. Facebook Page click here
6. Twitter click here

Adjoint and Inverse of Matrix Class 12

आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12
(Adjoint and Inverse of Matrix Class 12)

Adjoint and Inverse of Matrix Class 12

आव्यूह के सहखण्डज और व्युत्क्रम कक्षा 12 (Adjoint and Inverse of Matrix Class 12)
का अध्ययन करने के साथ-साथ इस आर्टिकल में हम आव्यूह के व्युत्क्रम के अस्तित्व के
लिए शर्तों की भी व्याख्या करेंगे।

Leave a Reply

Your email address will not be published. Required fields are marked *